New family of tilings of three-dimensional Euclidean space by tetrahedra and octahedra.
نویسندگان
چکیده
It is well known that two regular tetrahedra can be combined with a single regular octahedron to tile (complete fill) three-dimensional Euclidean space . This structure was called the "octet truss" by Buckminster Fuller. It was believed that such a tiling, which is the Delaunay tessellation of the face-centered cubic (fcc) lattice, and its closely related stacking variants, are the only tessellations of that involve two different regular polyhedra. Here we identify and analyze a unique family comprised of a noncountably infinite number of periodic tilings of whose smallest repeat tiling unit consists of one regular octahedron and six smaller regular tetrahedra. We first derive an extreme member of this unique tiling family by showing that the "holes" in the optimal lattice packing of octahedra, obtained by Minkowski over a century ago, are congruent tetrahedra. This tiling has 694 distinct concave (i.e., nonconvex) repeat units, 24 of which possess central symmetry, and hence is distinctly different and combinatorically richer than the fcc tetrahedra-octahedra tiling, which only has two distinct tiling units. Then we construct a one-parameter family of octahedron packings that continuously spans from the fcc to the optimal lattice packing of octahedra. We show that the "holes" in these packings, except for the two extreme cases, are tetrahedra of two sizes, leading to a family of periodic tilings with units composed four small tetrahedra and two large tetrahedra that contact an octahedron. These tilings generally possess 2,068 distinct concave tiling units, 62 of which are centrally symmetric.
منابع مشابه
Families of tessellations of space by elementary polyhedra via retessellations of face-centered-cubic and related tilings.
The problem of tiling or tessellating (i.e., completely filling) three-dimensional Euclidean space R(3) with polyhedra has fascinated people for centuries and continues to intrigue mathematicians and scientists today. Tilings are of fundamental importance to the understanding of the underlying structures for a wide range of systems in the biological, chemical, and physical sciences. In this pap...
متن کاملTiling Space by Platonic Solids, I
There exist precisely 914, 58 and 46 equivariant types of tile-transitive tilings of 3-dimensional euclidean space by topological cubes, oc-tahedra and tetrahedra, that fall into 11, 3, and 9 topological families, respectively. Representatives are described for all topological families. A general method for obtaining results of this kind is introduced.
متن کاملCounting Gluings of Octahedra
Three–dimensional colored triangulations are gluings of tetrahedra whose faces carry the colors 0, 1, 2, 3 and in which the attaching maps between tetrahedra are defined using the colors. This framework makes it possible to generalize the notion of two–dimensional 2p–angulations to three dimensions in a way which is suitable for combinatorics and enumeration. In particular, universality classes...
متن کاملThe Ammann-Beenker tilings revisited
This paper introduces two tiles whose tilings form a one-parameter family of tilings which can all be seen as digitization of two-dimensional planes in the four-dimensional Euclidean space. This family contains the Ammann-Beenker tilings as the solution of a simple optimization problem.
متن کاملParallel Transport Frame in 4 -dimensional Euclidean Space
In this work, we give parallel transport frame of a curve and we introduce the relations between the frame and Frenet frame of the curve in 4-dimensional Euclidean space. The relation which is well known in Euclidean 3-space is generalized for the rst time in 4-dimensional Euclidean space. Then we obtain the condition for spherical curves using the parallel transport frame of them. The conditi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 108 27 شماره
صفحات -
تاریخ انتشار 2011